
Thusoo et. Al.

Presented by: Manoj Sharma

Hive – A Petabyte Scale Data Warehouse Using
Hadoop

Basis

 Data is everywhere and increasing day by day

PAGE 2

Reference - https://insidebigdata.com/2017/02/16/the-exponential-growth-of-data/

Basis

 Increasing data size ∝ Increased complexity to handle it

 Increased processing times

 Drive for parallel database models.

PAGE 3

RoadMap -

 Hadoop Outline and Challenges

 Hive and its need

 Data Model and Type System

 HiveQL

 Data Storage and access

 System Architecture

 Conclusion & Few Thoughts

PAGE 4

Hadoop Outline

 What is Hadoop ?

 Coordinated distributed parallel processing

of data.

 Actively used by many companies like

Facebook, Yahoo etc.,

PAGE 5

Ref – Trademark logo of haddop inc

Hadoop Outline

 MapReduce is a programming model and an associated implementation for
processing and generating big data sets with a parallel, distributed algorithm on a
cluster.

PAGE 6

Ref - https://www.researchgate.net/figure/The-Hadoop-MapReduce-Pipeline_fig3_310036684

Hadoop Challenges

 HDFS is used to store the data and MR is used to process the data

 MR are set of programs written by users

 No Flexibility – error prone codes, programmer need knowledge of system
architecture.

 At Facebook

- HDFS was providing proper storage abstraction and scaling.

- Most of data was unstructured

 Need for HIVE !!

PAGE 7

HIVE

 Hive was developed by Facebook (around Jan 2007)

 Requisites

- Unstructured data handing

- Faster processing

- Minimum/No user intervention

- Flexible SQL type support

PAGE 8

HIVE

 Query processing engine for HDFS. (Can run as a layer on HDFS)

 HiveQL – Supports queries expressed in SQL like declarative language

 Extensible framework to support customizable file and data formats

PAGE 9

HiveQL

 Subset of SQL queries are supported

 SQL clauses like – FROM, joins -INNER, OUTER, RIGHT OUTER, GROUP BY,

UNION ALL, aggregations etc., are supported

 Example

- SELECT t1.a, t2.b FROM t1 JOIN t2 ON (t1.a = t2.b);

Equality predicates were only supported in a join query

Recent HIVE releases have support for resolving implicit joins

PAGE 10

HiveQL – MR support

 Supports MapReduce based analysis of data

 Example - Canonical word count on a table of documents

FROM (MAP doctext USING 'python wc_mapper.py' AS (word, cnt) FROM docs
CLUSTER BY word) a REDUCE word, cnt USING 'python wc_reduce.py';

Example - Find all the actions in a session sorted by time

FROM (FROM session_table SELECT sessionid, tstamp, data DISTRIBUTE BY
sessionid SORT BY tstamp) a REDUCE sessionid, tstamp, data USING
'session_reducer.sh';

PAGE 11

Data Model and Type System

 Hive provides data abstraction to user.

- abstraction via row and column layout of data (similar to RDBMS tables)

 Supports

- primitive data types – int, float, double, string

- complex types – maps, lists and struct

- nested structures

- provides ‘.’ and ‘[]’ operator support to access attributes of structured datatypes.

Example

CREATE TABLE T(a int, b list<map<string, struct<p1:int, p2:int>>);

PAGE 12

Data Storage

 Tables are logical units in Hive

 Table metadata associates the data in a table to hdfs directories

 Primary data units and their mappings –

Tables – stored in a directory in hdfs

Partitions – stored in the sub-directory of table’s directory

Buckets – stored in a file within the partition’s or table’s directory

Example – Creating a partitioned table

CREATE TABLE test_part(c1 string, c2 int) PARTITIONED BY (ds string, hr int);

PAGE 13

Serialization/DeSerialization (SerDe)

 Tables are serialized and deserialized using default serializers and deserializers in
Hive. Default is LazySerDe

 Custom SerDe can be provided by users.

- customized delimiters, regex support for parsing columns from rows.

 Any arbitrary data format and types encoded can be plugged into Hive

 Example:

add jar /jars/myformat.jar;

CREATE TABLE t2 ROW FORMAT SERDE 'com.myformat.MySerDe';

PAGE 14

File Formats

PAGE 15

 Hadoop files can be stored in different formats

Example –

TextInputFormat for text files, SequenceFileInputFormat for binary files, etc.

 Users can implement their own formats and associate them to a table

 Format can be specified when the table is created and no restrictions are imposed
by Hive

Example –
CREATE TABLE dest(key INT, value STRING) STORED AS INPUTFORMAT

'org.apache.hadoop.mapred.SequenceFileInputFormat' OUTPUTFORMAT
'org.apache.hadoop.mapred.SequenceFileOutputFormat‘;

Hive Components and Architecture

PAGE 16

Query Flow

PAGE 17

Ref - https://cwiki.apache.org/confluence/display/Hive/Design

Query Flow

PAGE 18

 HiveQL statement submitted via the CLI, the web UI or external client using thrift,
odbc or jdbc interfaces.

 Driver first passes the query to compiler – Typical parse, type check and semantic
analysis is done using the metadata

 Compiler generates a logical plan

 It is then optimized through rule based optimizer to generate a DAG of map-
reduce and hdfs tasks

 Execution engine then execute these tasks in the order of their dependencies using
Hadoop

MetaStore

PAGE 19

 System catalog for Hive. Stores all the information about the tables, their
partitions, schemas, columns and types, table locations, SerDe information etc.

 Can be queried or modified using a thrift interface

 This information is stored on traditional RDBMS

 Uses an open source ORM layer called DataNucleus to convert object
representations to relational schema and vice versa

 Scalability of the Metastore server is ensured by making sure no metadata calls are
made from mappers or reducers of a job

 Xml plan files are generated by compiler containing all the runtime information

Query Compiler

 Parser: Uses Antlr to generate abstract syntax tree (AST) for the query

 Semantic Analyser

- Compiler fetches all the required information from metastore

- Verifying column names, type-checking and implicit type conversions are done

- Transforms the AST to an internal query representation – Query Block (QB) tree.

 Logical Plan generator –

- Convert internal query to logical plan – tree of operators or operator DAG.

- Some operators are relational algebra operators like ‘filter’, ‘join’, etc. Some are Hive
specific say, reduceSink operator – occurs at map-reduce boundary.

PAGE 20

Query Compiler

 Optimizer - Contains a chain of transformations to

transform the plan for improved performance

 Walks on the operator DAG and does processing

actions when certain rules or conditions are satisfied

 Five main interfaces involved during the walk - Node,

GraphWalker, Dispatcher, Rule and Processor.

PRESENTATION TITLE PAGE 21

Query Compiler

 Typical Transformations

- Column pruning - only the columns that are needed in the query processing are
actually projected out of the row

- Predicate pushdown - Predicates are pushed down to the scan if possible so that rows
can be filtered early in the processing

- Partition pruning - Predicates on partitioned columns are used to prune out files of
partitions that do not satisfy the predicate

- Map side joins – Small tables in a join are replicated in all the mappers and joined
with other tables. Eg: SELECT /*+ MAPJOIN(t2) */ t1.c1, t2.c1 FROM t1 JOIN t2 ON(t1.c2 =
t2.c2);

- Join reordering – Larger tables are streamed in the reducer and smaller tables are
kept in memory

PRESENTATION TITLE PAGE 22

Query Compiler

 Supports few optimizations

 Repartitioning of data to handle skews in GROUP BY processing

- Most of the data might get sent to few reducers

- Use two-stage map-reduce

Stage one - Random distribution of data to the reducers to compute partial aggregations

Stage two - Partial aggregations are distributed on the GROUP BY columns to the reducers in the second MR
stage

Triggered in Hive by setting a parameter – set hive.groupby.skewindata=true;

 Hash based partial aggregations in the mappers – Hive does hash based partial aggregations within the mappers to
reduce the data sent to the reducers

- This reduces the time spent in sorting and merging data and gives a performance gain.

- Controlled by parameter – hive.map.aggr.hash.percentmemory

PRESENTATION TITLE PAGE 23

Query Plan

PRESENTATION TITLE PAGE 24

 Physical plan generator – Logical plan after
optimization is split into multiple map/reduce and
hdfs tasks

 A Multi-table insert query –

FROM
(SELECT a.status, b.school, b.gender FROM

status_updates a JOIN profiles b ON
(a.userid = b.userid AND a.ds='2009-03-20')) subq1

INSERT OVERWRITE TABLE gender_summary
PARTITION(ds='2009-03-20')

SELECT subq1.gender, COUNT(1) GROUP BY
subq1.gender
INSERT OVERWRITE TABLE school_summary
PARTITION(ds='2009-03-20')
SELECT subq1.school, COUNT(1) GROUP BY
subq1.school;

Execution Engine

 The tasks are executed in the order of their dependencies

 A map/reduce task first serializes its part of the plan into a plan.xml file

 This file is added to the job cache for the task and ExecMapper and ExecReducer
instances are spawned using Hadoop

 Each of these classes executes relevant parts of the DAG

 Final results are stored in a temporary location

 At the end of entire query, final data is either moved to a desired location or
fetched from the temporary location

PRESENTATION TITLE PAGE 25

Related Work

PAGE 26

Recent Work and Performance analysis

PRESENTATION TITLE PAGE 27

Conclusion

 Hive extensively used for large data processing. Example - Facebook, Yahoo

 Easy way to process large scale data

 SQL-like query support

 Flexibility to Hadoop user

 Custom support

PRESENTATION TITLE PAGE 28

Few thoughts

 Why does Hive provide file based data representation rather than block ?

 Can file formats provide – faster access to data (indexable), metadata per line of each file
? What is the feasibility of index based structures.

 Why is Optimizer scope restricted to Rule based ? What can be done to make it cost based
?

 Hive required metastore server to host dictionary data. Can this be a bottleneck ?

 Intermediate result set management. (result sets are flushed to disk and read again. If
cacheable ? What are provisions.)

 Subquery elimination, predicate rewrite feasibility.

PRESENTATION TITLE PAGE 29

References

 Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Antony, S., Liu,
H., and Murthy, R. 2010. Hive — A petabyte scale data warehouse using Hadoop.
In Proceedings of the International Conference on Data Engineering. 996–1005.

 https://cwiki.apache.org/confluence/display/Hive/Design

 http://www.apache.org/hadoop/hive

PRESENTATION TITLE PAGE 30

https://cwiki.apache.org/confluence/display/Hive/Design

